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Abstract. It is shown that at one-loop order a neutrino charge radius (NCR) may be defined, which is
ultraviolet finite, does not depend on the gauge-fixing parameter, nor on properties of the target other
than its electric charge. This is accomplished through the systematic decomposition of physical amplitudes
into effective self-energies, vertices, and boxes, which separately respect electroweak gauge invariance. In
this way the NCR stems solely from an effective proper photon-neutrino one-loop vertex, which satisfies
a naive, QED-like Ward identity. The NCR so defined may be extracted from experiment, at least in
principle, by expressing a set of experimental electron-neutrino cross-sections in terms of the finite NCR
and two additional gauge- and renormalization-group-invariant quantities, corresponding to the electroweak
effective charge and mixing angle.

PACS. 13.15.+g Neutrino interactions – 13.40.Gp Electromagnetic form factors

1 Introduction

It is a well-known fact that in non-Abelian gauge theo-
ries off-shell Green’s functions depend explicitly on the
gauge-fixing parameter. Therefore, the definition of quan-
tities familiar from QED, such as effective charges and
form-factors, is in general problematic. Such has been the
case with the neutrino electromagnetic form-factor and
the corresponding NCR. The calculational fact that, wit-
hin the Standard Model, the (off-shell) one-loop γ∗νν ver-
tex (and the NCR obtained from it) is a gauge-dependent
quantity has been established beyond any doubt in the
seventies [1]. Based on this observation, it was conclu-
ded that “the NCR”, which is the derivative at q2 = 0
of the electromagnetic form-factor F (q2) extracted form
this vertex, is not a physical quantity. Of course, if some-
thing is gauge-dependent it is not physical. But the fact
that the off-shell vertex is gauge-dependent only means
that it just does not serve as a reasonable definition of
the NCR, it does not mean that an effective NCR cannot
be encountered which satisfies all necessary physical pro-
perties, gauge-independence being one of them. Indeed,
since then, several papers in the literature have attempted
to find a modified vertex-like amplitude, leading to a con-
sistent definition of the electromagnetic NCR (see [2] for
an extended list of references). The common underlying
idea in all such papers is to rearrange the Feynman gra-
phs contributing to the scattering amplitude of neutrinos
with charged particles, in an attempt to find a vertex-like
combination that would satisfy all desirable properties.
Of course, in doing so, a plethora of non-trivial physical
constraints need to be satisfied. For example, one should
not enforce gauge-independence at the expense of intro-

ducing target-dependence. Therefore, a definite guiding-
principle is needed, allowing for the construction of physi-
cal sub-amplitudes with definite kinematic structure (i.e.
self-ener- gies, vertices, boxes).

2 The pinch technique effective vertex

What has been accomplished recently in [3] (and some
of the literature cited therein) is the proof that there
exists a well-defined and finite effective three-point (ver-
tex) Green’s function, which has the following properties:
(i) it is independent of the gauge-fixing parameter (ξ);
(ii) it is ultra-violet finite; (iii) it satisfies a QED-like
Ward-identity; (iv) it captures all that is coupled to a
genuine (1/q2) photon propagator; (v) it couples electro-
magnetically to the target; (vi) it does not depend on the
SU(2) × U(1) quantum numbers of the target-particles
used; (vii) it has a non-trivial dependence on the mass
mi of the charged isospin partner fi of the neutrino in
question; (viii) it contains only physical thresholds; (ix)
it satisfies unitarity and analiticity; (x) it can be extracted
from experiments.

The theoretical methodology allowing this physically
meaningful definition is that of the pinch technique (PT)
[4]. The PT is a diagrammatic method which exploits the
underlying symmetries encoded in a physical amplitude
such as an S-matrix element, in order to construct ef-
fective Green’s functions with special properties. In the
context of the NCR, the basic observation, already put
forth in [2], is that the gauge-dependent parts of the con-
ventional γ∗(q)νν, (to which the gauge-dependent NCR
is associated) communicate and eventually cancel alge-
braically against analogous contributions concealed inside
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the Z∗(q)νν vertex, the self-energy graphs, and the box-
diagrams (if there are boxes in the process), before any
integration over the virtual momenta is carried out. For
example, due to rearrangement produced by the syste-
matic triggering of elementary Ward identities the gauge-
dependent contributions coming from boxes are not box-
like, but propagator or vertex-like. To understand how the
topological modifications, which allow the communication
between initially different graphs, come about, notice that,
at one-loop level, all virtual longitudinal momenta (k) ori-
ginating from tree-level gauge-boson propagators inside
Feynman graphs trigger two elementary Ward identities,
which furnish inverse propagators. The first reads

�kPL = (�k+ �p)PL − PR �p
= S−1

f ′ (�k+ �p)PL − PRS−1
f (�p)

+ mf ′PL − mfPR, (1)

where PR(L) = [1 + (−)γ5]/2 is the chirality projection
operator and Sf is the tree-level propagator of the fermion
f ; f ′ is the isodoublet-partner of the external fermion f .
The second relevant Ward identity reads

(k + q)νΓαµν(q, k,−k − q) = tαµ(q) − tαµ(k), (2)

where Γαµν is the bare triple-gauge-boson vertex, and
tµν(q) = q2gµν − qµqν . We emphasize that all gauge-
dependent parts cancel exactly at the end of the pinching
procedure, even in the presence of non-vanishing fermion
masses mf and mf ′ , contrary to recent claims [5].

The new one-loop proper three-point function Γ̂µ
Aνiν̄i

satisfies the properties listed before. In particular, pro-
perties from (iv) to (vi) ensure that it is a photon ver-
tex, uniquely defined in the sense that it is independent
of using either weak isoscalar sources (coupled to the B-
field) or weak isovector sources (coupled to W 0), or any
charged combination. The NCR, to be denoted by

〈
r2
νi

〉
,

is then defined as
〈
r2
νi

〉
= 6(dF̂νi/dq2)q2=0; a straightfor-

ward calculation yields

〈
r2
νi

〉
=

GF

4
√

2 π2

[

3 − 2 log

(

m2
i

M2
W

)]

, (3)

where i = e, µ, τ , the mi denotes the mass of the charged
iso-doublet partner of the neutrino under consideration,
and GF is the Fermi constant.

3 Measuring the effective NCR

After arriving at a physically meaningful definition for the
NCR, the next crucial question is whether the NCR so de-
fined constitutes a genuine physical observable. In the rest
of this section we will briefly discuss the method proposed
in [3] for the extraction of the NCR from experiment.

It is important to emphasize that measuring the ent-
ire process f±ν → f±ν does not constitute a measure-
ment of the NCR, because by changing the target fermi-
ons f± one will generally change the answer, thus intro-
ducing a target-dependence into a quantity which (suppo-
sedly) constitutes an intrinsic property of the neutrino. In-
stead, what we want to measure is the target-independent

Standard Model NCR only, stripped of any contributions
depending on the specific properties of the target (mass,
spin, weak hypercharge), except its electric charge. Speci-
fically, as mentioned above, the PT rearrangement of the
S-matrix makes possible the definition of distinct, physi-
cally meaningful sub-amplitudes, one of which, Γ̂µ

Aνiν̄i
, is

finite and directly related to the NCR. However, the re-
maining sub-amplitudes, such as self-energy, vertex- and
box-corrections, even though they do not enter into the
definition of the NCR, still contribute numerically to the
entire S-matrix; in fact, some of them combine to form ad-
ditional physical observables of interest, most notably the
effective (running) electroweak charge and mixing angle.
Thus, in order to isolate the NCR, one must conceive of
a combination of experiments and kinematical conditions,
such that all contributions not related to the NCR will be
eliminated.

Consider the elastic processes f(k1)ν(p1) → f(k2)ν(p2)
and f(k1)ν̄(p1) → f(k2)ν̄(p2), where f denotes an el-
ectrically charged fermion belonging to a different iso-
doublet than the neutrino ν, in order to eliminate the
diagrams mediated by a charged W -boson. The Mandel-
stam variables are defined as s = (k1 + p1)2 = (k2 + p2)2,
t = q2 = (p1−p2)2 = (k1−k2)2, u = (k1−p2)2 = (k2−p1)2,
and s+t+u = 0. In what follows we will restrict ourselves
to the limit t = q2 → 0 of the above amplitudes, assuming
that all external (on-shell) fermions are massless. As a
result of this special kinematic situation we have the fol-
lowing relations: p2

1 = p2
2 = k2

1 = k2
2 = p1 · p2 = k1 · k2 = 0

and p1 ·k1 = p1 ·k2 = p2 ·k1 = p2 ·k2 = s/2. In the center-
of-mass system we have that t = −2EνE′

ν(1 − x) ≤ 0,
where Eν and E′

ν are the energies of the neutrino before
and after the scattering, respectively, and x ≡ cos θcm,
where θcm is the scattering angle. Clearly, the condition
t = 0 corresponds to the exactly forward amplitude, with
θcm = 0, x = 1.

At tree-level the amplitude fν → fν is mediated by
an off-shell Z-boson, coupled to the fermions by means
of the bare vertex Γµ

Zff̄
= −i(gw/cw) γµ [vf + afγ5] with

vf = s2
wQf − 1

2T f
z and af = 1

2T f
z .

At one-loop, the relevant contributions are determi-
ned through the PT rearrangement of the amplitude, gi-
ving rise to gauge-independent sub-amplitudes. In parti-
cular, the one-loop AZ self-energy Σ̂µν

AZ(q2) obtained is
transverse, for both the fermionic and the bosonic contri-
butions, i.e. Σ̂µν

AZ(q2) = (q2 gµν − qµqν)Π̂AZ(q2). Since the
external currents are conserved, from the ZZ self-energy
Σ̂µν

ZZ(q2) we keep only the part proportional to gµν , whose
dimension-full cofactor will be denoted by Σ̂ZZ(q2). Furt-
hermore, the one-loop vertex Γ̂µ

ZF F̄
(q, p1, p2), with F = f

or F = ν, satisfies a QED-like Ward identity, relating
it to the one-loop inverse fermion propagators Σ̂F , i.e.
qµΓ̂µ

ZF F̄
(q, p1, p2) = Σ̂F (p1) − Σ̂F (p2). It is then easy to

show that, in the limit of q2 → 0, Γ̂µ
ZF F̄

∼ q2γµ(c1 + c2γ5);
since it is multiplied by a massive Z boson propagator
(q2 − MZ)−1, its contribution to the amplitude vanishes
when q2 → 0. This is to be contrasted with the Γ̂µ

Aνiν̄i
,
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which is accompanied by a (1/q2) photon-propagator, thus
giving rise to a contact interaction between the target-
fermion and the neutrino, described by the NCR.

We next eliminate the box-contributions, by means
of the “neutrino–anti-neutrino” method. The basic ob-
servation is that the tree-level amplitudes M(0)

νf as well

as the part of the one-loop amplitude M(B)
νf consisting of

the propagator and vertex corrections (namely the “Born-
improved” amplitude), are proportional to [ūf (k2)γµ(vf +
afγ5)uf (k1)][v̄(p1)γµPL v(p2)], and therefore transform dif-
ferently than the boxes under the replacement [6] ν → ν̄,since1

ū(p2)γµPLu(p1) → −v̄(p1)γµPLv(p2) = −ū(p2)γµPRu(p1).
(4)

Thus, under the above transformation, M(0)
νf + M(B)

νf re-
verse sign once, whereas the box contributions reverse sign
twice. These distinct transformation properties allow for
the isolation of the box contributions when the forward
differential cross-sections (dσνf/dx)x=1 and (dσν̄f/dx)x=1
are appropriately combined. In particular, the combina-
tion σ

(+)
νf ≡ (dσνf/dx)x=1 + (dσν̄f/dx)x=1 does not con-

tain boxes, whereas the conjugate combination of cross-
sections, σ

(−)
νf ≡ (dσνf/dx)x=1 − (dσν̄f/dx)x=1, isolates

the contribution of the boxes.
Finally, a detailed analysis shows that in the kinematic

limit we consider, the Bremsstrahlung contribution vanis-
hes, due to a completely destructive interference between
the two relevant diagrams corresponding to the processes
fAν(ν̄) → fν(ν̄) and fν(ν̄) → fAν(ν̄). The absence of
such corrections is consistent with the fact that there are
no infrared divergent contributions from the (vanishing)
vertex Γ̂µ

ZF F̄
, to be canceled against.

σ
(+)
νf receives contributions from the tree-level exchange

of a Z-boson, the one-loop contributions from the ultra-
violet divergent quantities Σ̂ZZ(0) and Π̂AZ(0), and the
(finite) NCR, coming from the proper vertex Γ̂µ

Aνiν̄i
. The

first three contributions are universal, i.e. common to all
neutrino species, whereas that of the proper vertex Γ̂µ

Aνiν̄i

is flavor-dependent.
To proceed, the renormalization of Σ̂ZZ(0) and Π̂AZ(0)

must be carried out. It turns out that, by virtue of the
Abelian-like Ward-identities enforced after the pinch tech-
nique rearrangement [4], the resulting expressions combine
in such a way as to form manifestly renormalization-group
invariant combinations [7]. In particular, after carrying
out the standard re-diagonalization, two such quantities
may be constructed:

R̄Z(q2) =
αw

c2
w

[

q2 − M2
Z + �e {Σ̂ZZ(q2)}

]−1

s̄2
w(q2) = s2

w

(

1 − cw

sw
�e {Π̂AZ(q2)}

)

, (5)

where αw = g2
w/4π, and �e {...} denotes the real part.

1 Equation (4) appears in [3] with an inconsequential sign
error in the intermediate step.

In addition to being renormalization-group invariant,
both quantities defined in (5) are process-independent;
R̄Z(q2) corresponds to the Z-boson effective charge, while
s̄2

w(q2) corresponds to an effective mixing angle. We em-
phasize that the renormalized Π̂AZ(0) cannot form part
of the NCR, because it fails to form a renormalization-
group invariant quantity on its own. Instead, Π̂AZ(0) must
be combined with the appropriate tree-level contribution
(which evidently does not enter into the definition of the
NCR, since it is Z-mediated) in order to form the effective
s̄2

w(q2) acting on the electron vertex, whereas the finite
NCR will be determined from the proper neutrino vertex
only.

After casting σ
(+)
νf in terms of renormalization-group

invariant blocks, one may fix ν = νµ, and then consider
three different choices for f : (i) right-handed electrons, eR;
(ii) left-handed electrons, eL, and (iii) neutrinos, νi other
than νµ, i.e. i = e, τ . Thus, we arrive at the system

σ(+)
νµ νi

= sπR̄2(0)

σ(+)
νµ eR

= sπR̄2(0) s̄4
w(0) − 2λs2

w

〈
r2
νµ

〉

σ(+)
νµ eL

= sπR̄2(0)
(

1
2

− s̄2
w(0)

)2

+λ(1 − 2s2
w)
〈
r2
νµ

〉
(6)

where λ ≡ (2
√

2/3)sα GF , α = e2/4π. R̄2(0), s̄2
w(0), and〈

r2
νµ

〉
are treated as three unknown quantities, to be de-

termined from the above equations.
To extract the experimental values of the quantities

R̄2(0), s̄2
w(0), and

〈
r2
νµ

〉
, one must substitute in the above

equations the experimentally measured values for the dif-
ferential cross-sections σ

(+)
νµ eR , σ

(+)
νµ eL , and σ

(+)
νµ νi . Thus, one

would have to carry out three different pairs of experi-
ments.
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